Aller à la navigation principale Aller au contenu Aller à la navigation de bas de page
Répertoire national des certifications professionnelles

Chef de projet en intelligence artificielle

Active

N° de fiche
RNCP36129
Nomenclature du niveau de qualification : Niveau 7
Code(s) NSF :
  • 326t : Programmation, mise en place de logiciels
  • 326p : Informatique, traitement de l'information (organisation, gestion)
Formacode(s) :
  • 31094 : Conduite projet informatique
  • 31028 : Intelligence artificielle
Date d’échéance de l’enregistrement : 26-01-2025
Nom légal SIRET Nom commercial Site internet
ASCENCIA PARIS LA DEFENSE 50123141900034 - -
Objectifs et contexte de la certification :

La certification vise à préparer au métier de Chef de Projet Intelligence Artificielle. Elle répond à un besoin du monde professionnel dans un secteur en pleine mutation qui subit de plein fouet les changements induits par les nouvelles technologies.

  • L’apparition du terme dans le domaine public est récente et tient à la conjonction de trois facteurs principaux : 
  • Le développement de grandes masses de données,
  • Le développement de moyens de calculs puissants (liées à l’utilisation des GPU pour les PC individuels, et plus globalement à la loi de Moore),
  • La mise au point d’algorithmes puissants : les réseaux de neurones convolutifs (associés au développement du deep learning)

La plupart des entreprises ont des besoins en termes d’intégration de l’intelligence artificielle dans leur process.

Pour que cette intégration soit efficace, il faut à la fois maitriser la partie technique de l’intelligence artificielle, mais également le mode de fonctionnement des entreprises. Le chef de projet intelligence artificielle apporte une réponse à cette double problématique en faisant le lien entre les volets technologiques et organisationnels des transformations IA. Dans ce contexte, les activités abordées par la certification couvrent les deux grands domaines de la conduite du projet IA qui nécessite l’acquisition de compétences en « Business et Management » et des compétences en IA techniques. Il s’agit d’un profil que l’on trouve peu sur le marché et pour lequel la demande est forte.

Activités visées :

Le chef de projet en intelligence artificielle est chargé de l’approche globale de l'écosystème de l'intelligence artificielle et doit explorer ses opportunités potentielles dans différents contextes, d’animation d’atelier, de la formalisation des idées recueillies ainsi que du prototypage et des tests

Il a pour activité, l’identification des principales exigences techniques, budgétaire, organisationnelle et des ressources en capital humain, pour mettre en œuvre un projet d'IA, le management de l’équipe projet IA ainsi que de la mise en place du plan de formation et de la Préparation de support de communication

Il est chargé du traitement des différents types de processus de données, de la modélisation de données, de la conception du modèle IA et de l’optimisation du modèle IA, 

Il a pour mission la définition d’expérience utilisateur, le contrôle du respect de la règlementation, la prévention des risques globaux ainsi que la présentation des enjeux technologiques

Compétences attestées :

C1 Identifier des projets IA en exerçant une veille sur les innovations internationales fondées sur l’intelligence artificielle, en particulier dans les domaines du Machine Learning, Deep Learning, Neural Networks (Recurrent or Convolutional), en recueillant les enjeux métiers auprès des parties prenantes de l’organisation afin que les innovations identifiées et les besoins particuliers d’une entreprise ou d’un secteur d’activité soient en corrélation

C2 Déterminer les solutions facilitant l’usage des projets IA, en exerçant une veille, en échangeant avec ses pairs et en respectant les bonnes pratiques et la réglementation déjà établies (notamment le RGAA) afin d’assurer l’accessibilité de ces projets aux personnes en situation de handicap.

C3 Animer des ateliers pour imaginer des solutions nouvelles sur la base de ces innovations en collectant des idées à travers des outils collaboratifs, en réalisant des sessions de formation / sensibilisation préparant la participation à des ateliers de recherche d’idées afin de présenter des innovations en matière d’apprentissage automatisé auprès d’un public non technique. 

C4 Formaliser les idées recueillies en phase d’idéation en confrontant les solutions proposées par rapport aux enjeux métiers identifiés (pertinence métier) ainsi que les solutions proposées par rapport à leur faisabilité technique en sélectionnant les idées pertinentes en fonction de leurs conditions de réalisation : budget, calendrier, ressources humaines et techniques afin d’en rédiger une synthèse exhaustive

C5 Piloter l’évolution de la solution alpha a la version béta et de la version béta à la version admissible en développant le périmètre et les différents algorithmes afin de manager le projet dans son intégralité

C6 Piloter la mise en œuvre d’un périmètre restreint la solution envisagée avec un algorithme simple en utilisant un prototypage et en travaillant sur des échantillons limités de données texte, image ou audio, en faisant des essais d’algorithmes et de modèles statistiques adaptés au type d’apprentissage souhaité afin d’analyser les résultats obtenus et de recueillir des résultats et préconisations.

C7 Elaborer le cahier des charges du projet IA en définissant et planifiant les activités à réaliser en identifiant les risques du projet, en évaluant leur criticité afin de faire des propositions d’actions visant à en réduire la gravité ou la fréquence pour mener à bien le projet

C8 Elaborer le budget du projet IA en identifiant les coûts journaliers des ressources humaines internes et externes nécessaires en évaluant le temps humain à mobiliser pour chacune des ressources, en évaluant les coûts techniques : ressources logicielles, ressources réseau (Central Processing Units / Graphic Processing Units) et autres moyens nécessaires à la bonne marche du projet afin de respecter le budget alloué 

C9 Manager une équipe projet IA en recrutant les ressources humaines nécessaires notamment : data scientists ; software enginner ; machine learning researcher ; conversational UX designer, à la réalisation du projet IA y compris le micro-travail (collecte massive des données pour alimenter l’algorithme) afin de s’assurer du bon déroulement du projet IA

C10 Sélectionner des prestataires associés en les évaluant, en les fédérant sur un projet commun afin de s’assurer du bon aboutissement de celui-ci

C11 Piloter la mise en place du plan de formation complémentaire des membres de l’équipe projet en coordonnant de manière opérationnelle les ressources humaines mobilisées internes ou externes pour développer ou actualiser leurs compétences dans les technologies retenues.

C12 Collaborer à la préparation des supports de formation à destination des futurs utilisateurs ou de personnes impliquées dans le déploiement de la solution en communication de manière positive sur les premiers résultats obtenus ou les difficultés rencontrée en effectuant des démonstrations des solutions développées auprès de partenaires internes ou externes afin en d’informer sur l’avancement du projet et de conduire le changement de manière optimale

C13 Traiter des données grâce aux techniques de Data Mining / Data Analysis mettant en place de politique de collecte massive de données via des bases de données exploitables ou via des opérations de collecte de données à des fins d’apprentissage type Mechanical Turk, en agrégant des données collectées à l’aide d’outils techniques appropriés en sélectionnant des modèles statistiques d’analyses de données à appliquer afin d’exploiter des résultats sous forme de préconisations

C14 Modéliser des données (Data Modeling) sous un format exploitable quelle que soit leur source : texte, image, son en les transformant, en les normalisant et en les afin de garantir leur qualité et leur pertinence et pour optimiser les problématiques de stockage et de temps de traitement.  

C15 Concevoir un modèle IA en élaborant le Design de l’architecture informatique de la solution IA à développer via une Application Programming Interfaces (API) en définitissant des objectifs de performance visés, en sélectionnant un ou plusieurs algorithmes adaptés au projet d’apprentissage automatisé envisagé supervisé ou non supervisé (supervised / unsupervised learning) afin d’exploiter les résultats du prototypage

C16 Optimiser le modèle IA en interprétant les premiers résultats obtenus en contrôlant la qualité des modèles prédictifs – Time-series Predictions / Predictive Analytics – à l’aide de scénarios de test préétablis – test théoriques ou cas d’usage réels en analysant la fiabilité de l’algorithme par rapport au niveau de performance ou de précision attendu afin d’améliorer l’algorithme à partir des évaluations réalisées.  

C17 Définir une expérience utilisateur (UX) grâce à une interface (UI) simple et facile d’accès en animant des ateliers de conception, prototypage et tests de l’interface afin d’obtenir le meilleur résultat sur les plans fonctionnels et graphiques.

C18 Contrôler le respect de la réglementation en matière de protection des données personnelles (RGPD) en établissement une politique de collecte des données conforme à la réglementation et aux valeurs de l’entreprise en exerçant une veille sur les ouvertures ou contraintes réglementaires en fonction du secteur d’application retenu afin de présenter les enjeux éthiques de l’intelligence artificielle

C19 Prévenir les risques en matière de cybersécurité, d’intrusion dans l’architecture technique retenue ou d’exploitation abusive des données collectées en protégeant les données personnelles collectées dans le cadre de la mise en œuvre de la solution d’intelligence artificielle afin de garantir de l’intégrité et de l’authenticité des données collectées ou restituées en utilisant les techniques appropriées. 

C20 Mesurer l’impact de l’intelligence artificielle sur l’environnement, la société et l’individu et définir des solutions de remédiation et/ou de collaboration afin d’adopter une démarche soucieuse des questions éthiques

C21 Présenter des enjeux technologiques de la solution développée auprès de publics non spécialistes de l’IA en faisant des propositions d’applications étendues à des univers connexes afin de valoriser et promouvoir la solution d’intelligence artificielle développée auprès des parties prenantes de l’organisation (salariés, actionnaires, clients, partenaires, etc.).

Modalités d'évaluation :

Etudes de cas, mises en situation, épreuves à l'oral et à l'écrit

RNCP36129BC01 - Elaborer une solution d'intelligence artificielle grâce au Design Thinking

Liste de compétences Modalités d'évaluation

C1 Identifier des projets IA en exerçant une veille sur les innovations internationales fondées sur l’intelligence artificielle, en particulier dans les domaines du Machine Learning, Deep Learning, Neural Networks (Recurrent or Convolutional), en recueillant les enjeux métiers auprès des parties prenantes de l’organisation afin que les innovations identifiées et les besoins particuliers d’une entreprise ou d’un secteur d’activité soient en corrélation

C2 Déterminer les solutions facilitant l’usage des projets IA, en exerçant une veille, en échangeant avec ses pairs et en respectant les bonnes pratiques et la réglementation déjà établies (notamment le RGAA) afin d’assurer l’accessibilité de ces projets aux personnes en situation de handicap.

C3 Animer des ateliers pour imaginer des solutions nouvelles sur la base de ces innovations en collectant des idées à travers des outils collaboratifs, en réalisant des sessions de formation / sensibilisation préparant la participation à des ateliers de recherche d’idées afin de présenter des innovations en matière d’apprentissage automatisé auprès d’un public non technique. 

C4 Formaliser les idées recueillies en phase d’idéation en confrontant les solutions proposées par rapport aux enjeux métiers identifiés (pertinence métier) ainsi que les solutions proposées par rapport à leur faisabilité technique en sélectionnant les idées pertinentes en fonction de leurs conditions de réalisation : budget, calendrier, ressources humaines et techniques afin d’en rédiger une synthèse exhaustive

C5 Piloter l’évolution de la solution alpha a la version béta et de la version béta à la version admissible en développant le périmètre et les différents algorithmes afin de manager le projet dans son intégralité

C6 Piloter la mise en œuvre d’un périmètre restreint la solution envisagée avec un algorithme simple en utilisant un prototypage et en travaillant sur des échantillons limités de données texte, image ou audio, en faisant des essais d’algorithmes et de modèles statistiques adaptés au type d’apprentissage souhaité afin d’analyser les résultats obtenus et de recueillir des résultats et préconisations.

A partir d’une étude de cas d’entreprise détaillant son secteur d’activité et ses enjeux futurs, le candidat complète l’analyse sectorielle à travers des sources extérieures et propose différentes options stratégiques pour l’usage de l’IA au sein de l’entreprise. 

Mise en situation d’un atelier d’idéation avec des observateurs et par la suite un compte rendu est rédigé

Mise en situation professionnelle reconstituée : à partir d’un jeu de donnée d’entreprise, le candidate devra mettre en oeuvre divers prétraitements et augmentation de données afin de rendre ces dernières exploitables par les techniques d’apprentissage automatisées.

RNCP36129BC02 - Piloter un projet d'intelligence artificielle

Liste de compétences Modalités d'évaluation

C7 Elaborer le cahier des charges du projet IA en définissant et planifiant les activités à réaliser en identifiant les risques du projet, en évaluant leur criticité afin de faire des propositions d’actions visant à en réduire la gravité ou la fréquence pour mener à bien le projet

C8 Elaborer le budget du projet IA en identifiant les coûts journaliers des ressources humaines internes et externes nécessaires en évaluant le temps humain à mobiliser pour chacune des ressources, en évaluant les coûts techniques : ressources logicielles, ressources réseau (Central Processing Units / Graphic Processing Units) et autres moyens nécessaires à la bonne marche du projet afin de respecter le budget alloué 

C9 Manager une équipe projet IA en recrutant les ressources humaines nécessaires notamment : data scientists ; software enginner ; machine learning researcher ; conversational UX designer, à la réalisation du projet IA y compris le micro-travail (collecte massive des données pour alimenter l’algorithme) afin de s’assurer du bon déroulement du projet IA

C10 Sélectionner des prestataires associés en les évaluant, en les fédérant sur un projet commun afin de s’assurer du bon aboutissement de celui-ci

C11 Piloter la mise en place du plan de formation complémentaire des membres de l’équipe projet en coordonnant de manière opérationnelle les ressources humaines mobilisées internes ou externes pour développer ou actualiser leurs compétences dans les technologies retenues.

C12 Collaborer à la préparation des supports de formation à destination des futurs utilisateurs ou de personnes impliquées dans le déploiement de la solution en communication de manière positive sur les premiers résultats obtenus ou les difficultés rencontrée en effectuant des démonstrations des solutions développées auprès de partenaires internes ou externes afin en d’informer sur l’avancement du projet et de conduire le changement de manière optimale

Etude de cas portant sur la conception d’un cahier des charge et l’élaboration d’un budget par rapport à un cas donné.

Mise en situation professionnelle : le candidat est soumis à un projet d’intelligence artificielle. Il doit réaliser un rapport de mission et une soutenance orale devant un jury composé de professeurs et d’experts.

RNCP36129BC03 - Développer une solution d'intelligence artificielle (Machine et Deep Learning)

Liste de compétences Modalités d'évaluation

C13 Traiter des données grâce aux techniques de Data Mining / Data Analysis mettant en place de politique de collecte massive de données via des bases de données exploitables ou via des opérations de collecte de données à des fins d’apprentissage type Mechanical Turk, en agrégant des données collectées à l’aide d’outils techniques appropriés en sélectionnant des modèles statistiques d’analyses de données à appliquer afin d’exploiter des résultats sous forme de préconisations

C14 Modéliser des données (Data Modeling) sous un format exploitable quelle que soit leur source : texte, image, son en les transformant, en les normalisant et en les afin de garantir leur qualité et leur pertinence et pour optimiser les problématiques de stockage et de temps de traitement.  

C15 Concevoir un modèle IA en élaborant le Design de l’architecture informatique de la solution IA à développer via une Application Programming Interfaces (API) en définitissant des objectifs de performance visés, en sélectionnant un ou plusieurs algorithmes adaptés au projet d’apprentissage automatisé envisagé supervisé ou non supervisé (supervised / unsupervised learning) afin d’exploiter les résultats du prototypage

C16 Optimiser le modèle IA en interprétant les premiers résultats obtenus en contrôlant la qualité des modèles prédictifs – Time-series Predictions / Predictive Analytics – à l’aide de scénarios de test préétablis – test théoriques ou cas d’usage réels en analysant la fiabilité de l’algorithme par rapport au niveau de performance ou de précision attendu afin d’améliorer l’algorithme à partir des évaluations réalisées.  

Mise en situation professionnelle reconstituée : à partir d’un jeu de donnée d’entreprise, le candidate devra mettre en œuvre divers prétraitements et augmentation de données afin de rendre ces dernières exploitables par les techniques d’apprentissage automatisées.

Mise en situation professionnelle : en se basant sur une solution proposée, le candidat devra réaliser un rapport de synthèse et d’étonnement incluant : l’explication des choix de solutions IA implémentés, l’interprétation des résultats, l’évaluation de la fiabilité des algorithmes et une proposition d’optimisation

RNCP36129BC04 - Déployer une solution d'intelligence artificielle

Liste de compétences Modalités d'évaluation

C17 Définir une expérience utilisateur (UX) grâce à une interface (UI) simple et facile d’accès en animant des ateliers de conception, prototypage et tests de l’interface afin d’obtenir le meilleur résultat sur les plans fonctionnels et graphiques.

C18 Contrôler le respect de la réglementation en matière de protection des données personnelles (RGPD) en établissement une politique de collecte des données conforme à la réglementation et aux valeurs de l’entreprise en exerçant une veille sur les ouvertures ou contraintes réglementaires en fonction du secteur d’application retenu afin de présenter les enjeux éthiques de l’intelligence artificielle

C19 Prévenir les risques en matière de cybersécurité, d’intrusion dans l’architecture technique retenue ou d’exploitation abusive des données collectées en protégeant les données personnelles collectées dans le cadre de la mise en œuvre de la solution d’intelligence artificielle afin de garantir de l’intégrité et de l’authenticité des données collectées ou restituées en utilisant les techniques appropriées. 

C20 Mesurer l’impact de l’intelligence artificielle sur l’environnement, la société et l’individu et définir des solutions de remédiation et/ou de collaboration afin d’adopter une démarche soucieuse des questions éthiques

C21 Présenter des enjeux technologiques de la solution développée auprès de publics non spécialistes de l’IA en faisant des propositions d’applications étendues à des univers connexes afin de valoriser et promouvoir la solution d’intelligence artificielle développée auprès des parties prenantes de l’organisation (salariés, actionnaires, clients, partenaires, etc.).

Dans le cadre d'un projet réel ou fictif, le candidat doit présenter un dossier "développement, test, déploiement, tenant compte des règlementations et de la prévention des risques" sous la forme d'un rapport écrit et argumenté. Le rapport sera évalué. Une présentation de 15mn est également demandée.

Dans le cadre d'un projet réel ou fictif, le candidat doit présenter un dossier "développement, test, déploiement, tenant compte des règlementations et de la prévention des risques" sous la forme d'un rapport écrit et argumenté. Le rapport sera évalué. Une présentation de 15mn est également demandée

Description des modalités d'acquisition de la certification par capitalisation des blocs de compétences et/ou par correspondance :

 La certification s'obtient par la validation complète de l’ensemble des 4 blocs de compétences  

Secteurs d’activités :

• Tous secteurs d'activités : les offres d’emplois IA proviennent en majorité d’entreprises correspondant aux acteurs de la Branche « Consulting» et «Entreprise éditrice de solutions Data Science» ainsi que de clients. 

En France, différents rapports et études ont identifié certains secteurs les plus porteurs pour l’IA et vecteurs de projets d’Intelligence Artificielle. Ces secteurs d’activités se caractérisent par une forte exposition des effectifs aux impacts de l’IA et un niveau élevé d’exposition à la digitalisation. Parmi ces principaux secteurs, on trouve : 

• Services financiers : Parmi les domaines les plus impactés par l’IA, on peut citer : les activités de marché (analyse prédictive du marché, performance des fonds d’investissement, aide pour fixer le meilleur prix des actions etc.), les opérations courantes (vente de produits financiers : accord ou non d’une demande de prêt, octroi de crédit, analyse documentaire, détection de fraudes etc.), service financier à la personne (aide des clients via des chatbots, assistants IA).  

• Service juridique : Parmi les domaines les plus impactés par l’IA, citons : la recherche et analyse de documents (jurisprudence, informations légales de l’entreprise et une analyse pour trier et grouper les documents les plus pertinents pour le cas juridique à traiter), la gestion des contrats (l’analyse automatique des documents constitutifs, la préparation des documents contractuels et le suivi du respect des clauses après signature), le suivi des opérations juridiques quotidiennes.  

• Commerce de détail : Les principaux domaines impactés par l’IA sont les suivants : personnalisation de l’expérience client (analyse plus fine du comportement des consommateurs en temps réel et meilleure anticipation de leurs besoins), optimisation du fonctionnement du point de vente, optimisation du backoffice 

• Industrie : Les principaux applications de l’IA sont les suivants : robotique, automatisme, maintenance prédictive, contrôle qualité, interfaces homme-machine, etc. 

• Santé : Les domaines où l’IA intervient sont vastes : médecine de prévention, aide au diagnostic et au choix des traitements, coaching patient, épidémiologie, chirurgie autonome, médecine augmentée, etc.  

Type d'emplois accessibles :

Les métiers associés au chef projet en intelligence artificielle sont répertoriés sous différentes appellations sur le marché de l’emploi : 

  • Chef de projet en intelligence artificielle
  • Ingénieur Intelligence Artificielle 
  • Directeur projet Intelligence Artificielle 
  • Manager d’équipe Intelligence Artificielle 
  • Expert Intelligence Artificielle 
  • Consultant Intelligence Artificielle 
  • Chef de projet Machine Learning
Code(s) ROME :
  • M1805 - Études et développement informatique
Références juridiques des règlementations d’activité :

Prise en compte des réglementations et recommandations en matière de RGAA, de RGPD, de sécurité des données et des systèmes, et d’éthique.

Le cas échant, prérequis à l’entrée en formation :

Le candidat doit être titulaire d’un diplôme ou Titre RNCP de niveau 6, ou de 180 crédits ECTS 

Le candidat non titulaire d’un diplôme ou titre susmentionné, mais justifiant de plus de 2 années d’expériences dans des responsabilités en adéquation avec la certification visée peut être admis. Dans ce cas, une demande doit être adressée au certificateur qui est le seul à pouvoir valider l’inscription. 

L’admission se fait sur dossier, tests écrits et entretien de motivation


Le cas échant, prérequis à la validation de la certification :

Pré-requis disctincts pour les blocs de compétences :
Non

Validité des composantes acquises :
Voie d’accès à la certification Oui Non Composition des jurys
Après un parcours de formation sous statut d’élève ou d’étudiant X

Le président du jury est désigné par l’ensemble des membres du jury que sont :

• Le coordinateur de programme ou la directrice pédagogique Ascencia BS

• Deux professionnels 

En contrat d’apprentissage X

Le président du jury est désigné par l’ensemble des membres du jury que sont :

• Le coordinateur de programme ou la directrice pédagogique Ascencia BS

• Deux professionnels 

Après un parcours de formation continue X

Le président du jury est désigné par l’ensemble des membres du jury que sont :

• Le coordinateur de programme ou la directrice pédagogique Ascencia BS

• Deux professionnels 

En contrat de professionnalisation X

Le président du jury est désigné par l’ensemble des membres du jury que sont :

• Le coordinateur de programme ou la directrice pédagogique Ascencia BS

• Deux professionnels 

Par candidature individuelle X -
Par expérience X

Le jury est composé de trois personnes : 

  • La responsable du service VAE
  • Deux professionnels en activité 
Oui Non
Inscrite au cadre de la Nouvelle Calédonie X
Inscrite au cadre de la Polynésie française X
Date de décision 26-01-2022
Durée de l'enregistrement en années 3
Date d'échéance de l'enregistrement 26-01-2025
Statistiques :
Lien internet vers le descriptif de la certification :

Organisme(s) préparant à la certification :
Nom légal Rôle
ALBERT GLOBAL DATA SCHOOL Habilitation pour former et organiser l’évaluation
COLLEGE DE PARIS FORMATION CONTINUE - DO IT OUTREMER Habilitation pour former et organiser l’évaluation
DATABIRD Habilitation pour former et organiser l’évaluation
DATASCIENTEST Habilitation pour former et organiser l’évaluation
DIGITAL COLLEGE Habilitation pour former et organiser l’évaluation
DIGITAL LEARNING CONTEST Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
INST DE FORMATION COMMERCIALE PERMANENTE Habilitation pour former et organiser l’évaluation
IQ FACTORY Habilitation pour former et organiser l’évaluation
JUNIA XP Habilitation pour former et organiser l’évaluation
SIMPLON.CO Habilitation pour former et organiser l’évaluation
SKILLS4ALL Habilitation pour former et organiser l’évaluation
Référentiel d’activité, de compétences et d’évaluation :

Référentiel d’activité, de compétences et d’évaluation
Ouvre un nouvel onglet Ouvre un site externe Ouvre un site externe dans un nouvel onglet